Home Back

Simple Beam Deflection Calculator

Simple Beam Deflection Formula:

\[ \delta = \frac{5 \times w \times L^4}{384 \times E \times I} \]

pounds per inch
inches
psi
inches4

Unit Converter ▲

Unit Converter ▼

From: To:

1. What is Simple Beam Deflection?

The simple beam deflection formula calculates the maximum deflection of a simply supported beam under a uniformly distributed load. This is important for structural engineering and design to ensure beams don't deflect beyond acceptable limits.

2. How Does the Calculator Work?

The calculator uses the simple beam deflection equation:

\[ \delta = \frac{5 \times w \times L^4}{384 \times E \times I} \]

Where:

Explanation: The equation shows deflection is directly proportional to the load and the fourth power of length, and inversely proportional to stiffness (E×I).

3. Importance of Deflection Calculation

Details: Calculating deflection is crucial for structural integrity, preventing excessive bending that could lead to serviceability issues or failure.

4. Using the Calculator

Tips: Enter all values in consistent units (inches and pounds). Ensure values are positive and within reasonable ranges for structural materials.

5. Frequently Asked Questions (FAQ)

Q1: What's a typical acceptable deflection limit?
A: Often L/360 for floors, L/240 for roofs, but varies by building code and application.

Q2: Does this work for point loads?
A: No, this is for uniform loads only. Point loads have different deflection formulas.

Q3: What are typical E values?
A: ~29,000,000 psi for steel, ~1,600,000 psi for wood (varies by species).

Q4: How does beam material affect deflection?
A: Stiffer materials (higher E) deflect less. Larger cross-sections (higher I) also reduce deflection.

Q5: What if my beam isn't simply supported?
A: Different support conditions (fixed, cantilever) require different deflection formulas.

Simple Beam Deflection Calculator© - All Rights Reserved 2025