T-Test Formula:
From: | To: |
The t-test using means compares two sample means to determine if they are significantly different from each other. It's commonly used in hypothesis testing when comparing groups.
The calculator uses the t-test formula:
Where:
Explanation: The t-statistic measures how many standard errors the difference between means is from zero.
Details: The t-test is fundamental in statistical analysis for determining if observed differences between groups are statistically significant or likely due to chance.
Tips: Enter the mean difference and standard error of difference. Both values must be valid (se_diff cannot be zero).
Q1: When should I use a t-test with means?
A: Use when comparing two independent sample means with normally distributed data and equal variances.
Q2: What does the t-statistic tell me?
A: A larger absolute t-value indicates a greater difference between groups relative to the variability in the data.
Q3: How do I interpret the t-statistic?
A: Compare your t-statistic to critical values from the t-distribution table based on your degrees of freedom and significance level.
Q4: What's the difference between one-tailed and two-tailed tests?
A: One-tailed tests examine if one mean is greater than the other, while two-tailed tests examine if they're simply different.
Q5: What if my standard error is zero?
A: This suggests no variability in your samples, which is extremely unlikely with real data. Check your calculations.